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Abstract 

 

Connect Four is a strongly solved board game; the 

global optimal move for every game state can be 

determined. Connect Four is usually played with the 

physical board game rather than on a computer. This 

project bridges accessibility between the Connect Four 

solver and the physical board game by using traditional 

computer vision techniques to identify the game state for 

input to the solver via a mobile application. The application 

takes a picture of the game board and returns the next 

optimal move by displaying an augmented image. 

 

1. Introduction 

Connect Four is a board game where two players 

alternately place pieces in a vertical grid. The objective is 

to create a game state where four pieces of the same color 

are contiguous horizontally, vertically, or diagonally. 

Connect Four is a strongly solved game and the global best 

move can be calculated from any game state [1]. A player 

going first can guarantee victory when playing perfectly. A 

player going second can guarantee victory if the other 

player makes at least one mistake. 

These factors make Connect Four an attractive game to 

approach because we can leverage modern computational 

power to dynamically calculate the best move in near real-

time.  

However, Connect Four is usually played as the physical 

board game while these computational methods are all 

virtual. By creating a mobile application (app), we can 

bridge this disconnect and take advantage of the available 

computing power in the cloud and on mobile to augment 

reality. The basic idea is to use the app to take a picture of 

the game board in order to calculate and communicate the 

next optimal move to the user.  

2. Related work 

There are no existing computer vision publications on 

Connect Four. However, there are computer vision 

techniques that are closely related to this project for object 

recognition. Thus, we focus on techniques used in this 

project as well as related technologies that were considered. 

 

2.1. Detectors and Descriptors  

A popular keypoint and descriptor technique is scale-

invariant feature transform (SIFT) (Figure 1) [2]. To detect 

keypoints, SIFT approximates a Laplacian of Gaussian 

(LoG) edge detector with a difference of Gaussians for 

more efficient computation. To achieve multiscale 

performance, SIFT uses a Gaussian pyramid. Extrema and 

corners are then detected in this pyramid across each image 

level and across scales. 

The SIFT descriptor uses a 16x16 neighborhood around 

the keypoint. Histograms of gradient orientations of 4x4 

sub-blocks are created and concatenated. The values of the 

histograms are Gaussian weighted based on distance from 

the keypoint and a threshold is also applied to the 

histograms for robustness to illumination variations. 

Inspired by the SIFT keypoint and descriptor, a faster 

method was created: Speeded Up Robust Features (SURF) 

[3]. Further approximating LoG, SURF uses box filters via 

implementation in integral images to quickly calculate edge 

images. 

The SURF descriptor uses wavelet coefficients in a 

neighborhood of 20x20 with 4x4 sub-blocks. The sums and 

absolute sums of horizontal and vertical wavelet 

coefficients compose the descriptor. Analysis of SURF 

shows that it is significantly faster than SIFT but is less 

robust than SIFT when handling viewpoint variation and 

illumination variation. 

There are alternative keypoint detectors and descriptors 

that trade robustness for speed but we prioritize robustness 

for this project and SIFT and SURF are sufficient. 

Alternatively, instead of detecting keypoints, detecting 

blobs may be equally useful if the region of interest is 

largely uniform. Traditional blob detection has utilized 

multiscale implementations of LoG via image pyramids [4]. 

There is a peak when the scale of the kernel matches the 

scale of the blob. Similar to SIFT and SURF, LoG may be 

approximated by a difference of Gaussians or box filters via 

integral images for performance increases. 

Once a blob has been detected, descriptors such as SIFT 

and SURF may be used to identify the blob. 
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2.2. Image Correspondence 

If we know a priori that two images have the same or 

similar subjects, we can transform the viewpoint of one 

image to correspond to the other. A common method to 

calculate this correspondence is to extract keypoints from 

both images and find matches between the two. We can 

then use RANSAC [6] to filter out inconsistent matches 

(Figure 2). With these matches, we can solve a projective 

transform of one image to the other.  

The corresponding point between images do not have to 

be from keypoints though; corresponding points may be 

derived via any method. For a projective transform, a 

minimum of four matching points are required. 

 

2.3. Line Detection 

Detecting lines in images is useful because many real 

objects are designed to be rectangular prisms and thus have 

well-defined edges. A common method for detecting lines 

is the Hough transform [7]. A Hough transform takes every 

point and projects it in a parameter space such that it spans 

all possible lines that it could belong to. When all points in 

the image have been projected, maxima arise from the 

intersection of many projections. These maxima correspond 

to likely lines in the image. 

3. Methods 

There are two primary components for this project. The 

first is processing the image to extract the current game 

state for input to the Connect Four solver. The second is the 

implementation of the iOS app to utilize this project on 

mobile. 

 

3.1. Game state extraction 

The input to the system is the raw RGB image. The first 

step is to generate a silhouette of the game board. To 

accomplish this, we first convert the image from RGB to 

HSV. This serves to build robustness to illumination 

variation. We determine the hue of the blue game board and 

then create a L1 distance threshold to detect the board. The 

silhouette can broadly detect the game board. By using 

image hole closing techniques, we can clean up the 

silhouette to be usable (Figure 3(b)).  

Next we extract the edges of the silhouette and use a 

Hough transform to acquire the primary lines of the outline 

of the board. We merge collinear line segments and place a 

threshold on the length of the found lines to increase 

robustness. With the lines found, we then determine the 

points of intersection of the found lines. Sometimes we may 

find more lines than the four edges of the game board. In 

this case, we choose the four lines which intersect in the 

smallest quadrangle. 

The heuristic behind this choice is that the interior of the 

game board should not produce any lines as it has no 

straight edges since it is entirely circles. There is also a 

minimum area to reduce noise. The results are shown in 

Figure 3(c). 

With the four corners of the game board identified, we 

now have sufficient points to calculate a homography of the 

input image to a rectified canonical image (Figure 3(d)).  

With the rectified game board and known corners, 

identifying the state of the board becomes straightforward. 

We first identify the locations of pieces of each color. To 

identify the red pieces, we first pixel-wise normalize the 

RGB image. We then extract the red color channel from the 

normalized image and threshold (Figure 3(e)). To identify 

the yellow pieces, we convert the image to HSV and 

threshold based upon the hue L1 distance (Figure 3(f)). 

Both methods are philosophically the same but RGB has an 

advantage to HSV in the case of red because red wraps 

around the hue channel in HSV. This makes extracting red 

more complicated whereas in RGB, an entire channel is 

already dedicated to red. With both image masks, we close 

holes by two dilations in the image to remove noise. We 

then label the image to identify discrete pieces. 

We now divide the game board into a grid. The grid and 

identification of the pieces may not be perfect. Accounting 

for this, we iterate through each labelled piece and choose 

the cell with the most pixels of the silhouette as the cell to 

which the piece belongs (Figure 3(g)). The process can be 

interpreted as a generalized Hough transform. This results 

in a fully determined game state. 

Figure 1. Example of SIFT keypoints and descriptors [5].  

Figure 2. Example of keypoint correspondences after 

RANSAC [5]. 
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With the game state determined, we now submit it to a 

Connect Four solver [8] whose API we have slightly altered 

to fit our system. Briefly, the solver explores all possible 

future game states via a minimax tree. By taking advantage 

of alpha-beta pruning, the tree can be efficiently searched.  

The solver returns the location of the optimal next move 

and we draw the next piece in the appropriate position as 

well as display the column number of the optimal move in 

the top left corner (Figure 3(h)). Column 1 is the left-most 

column. 

 

3.2. Mobile app implementation 

The app takes a picture using the camera and sends it via 

FTP to a server. The server is triggered on receipt of the file 

to run the MATLAB implementation of the game state 

extraction and create the final image with the next move. 

This image is then pushed back to the mobile device and 

displayed. 

 

4. Results and Discussion 

The processing pipeline results are shown in Figure 3. 

An actual playthrough of the game is shown in Figure 4. 

The app worked surprisingly well. On moves (iii), (ix), and 

(x), the images had to be retaken because game board 

detection did not recognize all four edges of the game board 

correctly. Although it does not work on the first try every 

time, it is encouraging that by taking new pictures, the 

method can work on subsequent attempts. 

The initial thought is that silhouette detection does not 

have to be robust because we are looking for edges. We 

only have to detect fragments of each edge to extract line 

segments. The line segments do not have to intersect on the 

image because we can extrapolate the true line to calculate 

points of intersection. 

When we are choosing which lines to use, the 

assumption that the smallest quadrangle is the true game 

board usually holds. It has held that the game board does 

not generate edges within it but at large oblique angles, the 

legs of the game board begin to be detected as edges and 

this can result in a pathology in the method. 

At the same time, silhouette detection cannot 

catastrophically fail. Figure 5 (e), (f), (i), (j), and (m) are 

examples when silhouette detection failed. Diagnosing 

these cases, we see that the most common mode of failure 

is when the background color is too similar to blue and 

detected as an extension of the game board. There are many 

natural colors with hues similar to blue including the sky 

and this may lead to incorrect results. 

Even knowing this pathology, the solutions are not 

immediately apparent. If the blue color of the game board 

is an unreliable descriptor, then the only other unique aspect 

is its shape. Detecting a particular shape is more difficult, 

especially if detection must be projectively invariant. One 

potential idea is to use blob detectors and if enough blobs 

are arranged in projective grid then we can assume that the 

game board must contain these blobs. However, even at 

face value this method is already more easily proposed than 

implemented. 

If we can detect the four corners correctly, the 

homography is robust and the remaining methods can 

perform independently of previous processing. This is 

based on a strong assumption that the four corners detected 

correspond to the true four corners. The strength of this 

assumption leads to more robust techniques down the 

pipeline but also requires that previous techniques are 

robust. This requirement is not necessarily met so there are 

many times in which the proposed method for this project 

fails. In Figure 5(l), we see what can happen when this 

assumption fails. The game board is incorrectly detected 

and the homography results in an incorrect grid for piece 

detection. 

Even when the corners are properly detected, piece 

detection can be challenging. Figure 5 (b) and (h) are 

examples of when red is incorrectly detected. In both of 

these cases, the background is similar to red. These 

pathologies are not discouraging because the method is 

working exactly as intended. The pieces are identified 

almost exclusively on color and in this case, the technique 

is achieving few false negatives. Furthermore, even to a 

human from a distance, it would be unreasonable for them 

to quickly determine which cells had red pieces and which 

cells were empty with a red background. This suggests that 

future work needs to somehow differentiate between red 

pieces and red backgrounds of exactly the same color. 

Perhaps the texture of the pieces or the matte reflectance 

could be identified. 

On the other hand, yellow piece detection does not 

perform as well. Figure 5 (a), (d), (g), (n), (q), and (r) show 

examples of incorrect yellow piece detection. Figure 5(d) 

can be explained by the argument above for red piece 

detection. Figure 5 (a), (n), and (r) show false positives for 

yellow piece detection. In these cases, the background 

colors are being detected as yellow and this not an 

uncommon situation since lighting usually has a yellow tint. 

One way to combat this is to check for board consistency. 

Physically, pieces cannot float in the game board without 

pieces below it so this could be one check. Another check 

could be to count the instances of each piece such that the 

number of red and yellow pieces are within one since 

players alternate turns. When checking for number of 

pieces, if an incorrect of pieces is detected, it would still be 

ambiguous to determine which pieces are false positives. 

Yellow piece false negatives are shown in Figure 5 (g) 

and (q). In these cases, it seems like the background has 

changed the white balance of the images and the hue of the 

pieces has been shifted outside the threshold. Detecting 

yellow is again difficult because yellow is particularly 

sensitive to white balance changes and this affects the 

fundamental color assumption in our method. 

White balance is also interesting because even in the 
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same real world lighting conditions, adjusting white 

balance effectively adjusts illumination. Cursorily looking 

over the images in Figure 5, we can see that the game board 

has varying degrees of apparent illumination even though 

only the background is changing. Thus, illumination 

robustness is especially important due to processing by the 

image acquisition stack. 

Even with so many failure cases, there are several 

instances in which the method performs correctly. In 

addition to the complete game played in Figure 4, Figure 5 

(c), (k), (o), and (p) correctly detect the state in very 

different situations.  

Figure 5 (c) and (k) correctly detect the state when the 

background is a benign color relative to the colors being 

detected. Figure 5 (o) and (p) demonstrate the rotation 

invariance of the homography and Figure 5(o) is 

particularly impressive in that its background is cluttered.  

 

4.1. Alternative methods 

The original plan for game board identification was to 

use SIFT keypoints and descriptors in order to calculate a 

homography with RANSAC with a canonical rectified 

game board. This method did not work well because the 

game board is all circles. The circles do not generate any 

SIFT keypoints. This led to trying blob detectors with SIFT 

descriptors. The circles of the game board are detected but 

the keypoint matching does not work well because we are 

then using the background to match keypoints. However, 

the background of the canonical reference image is not 

going to match with an arbitrary background. Even just 

using only the blob locations without descriptors is not 

robust because not all of the game cells are necessarily 

detected as blobs. This would require further work to 

determine the true extent of the game board. If the 

keypoints are not matched correctly then RANSAC will not 

work. The keypoints could be heuristically matched but 

even then the method is not guaranteed to be robust. 

This reveals the actual intent of rectifying the image. We 

are not truly after image identification since we a priori 

assume that the game board must be in the picture but we 

are actually interested in localization of the game board. 

Keypoints are the traditional approach but in this case 

cannot define the game board well enough. Interestingly, 

edge detection via silhouette and Hough transform are not 

the first thoughts that arise when approaching this problem 

but this method provides important exact localization 

information.  

There are many heuristic-based methods in this 

implementation. Many of these work well in controlled 

environments but they may fail quickly in arbitrary 

environments. Improvements to these methods could come 

from more advanced methods such as convolutional neural 

networks (CNNs). Every step of this project could actually 

be implemented in a CNN. In fact, it would not be 

unthinkable that a CNN could perform the entire game state 

detection pipeline.   

 

5. Future Work 

The original idea for this project was to create an 

augmented reality app for solving Connect Four. The 

augmented reality portion proved to be too ambitious for 

this project. There are object tracking libraries available for 

object tracking on mobile but many of them are not free or 

do not work well. As noted above, the game board does not 

generate keypoints and almost all traditional object tracking 

methods rely on keypoints. These algorithms could be 

modified to use blob detection but then again descriptors 

are a challenge because the game board occludes the 

background. 

Another idea would to track the game board would be to 

identify an area devoid of keypoints but this would then 

significantly alter the object tracking algorithmically. 

Fundamentally, while the idea of augmented reality in 

the app may sound novel and exciting, there is actually little 

utility added. The minimum requirements for this app to 

function is to display a number to the user to indicate in 

which column the next piece should be placed. The picture 

is to create a more intuitive user experience. Augmented 

reality would further enhance user experience but is an 

expensive computation. 

Currently all of the processing is performed in the cloud. 

There are two factors for this decision. The first is that all 

of the algorithms have already been implemented in 

MATLAB and the Connect Four solver is written in Python. 

Admittedly, the MATLAB portions could be converted to 

native code using analogous functions in libraries such as 

OpenCV [9]. It is a significant resource commitment to run 

a Python script natively on iOS and the alpha-beta pruning 

algorithm would probably have to be rewritten. 

Furthermore, the Connect Four solver requires 

significant computation. On a server, the solver can at times 

use up to 30 seconds of computation to solve its alpha-beta 

pruning algorithm. Mobile devices are generally less 

computationally powerful than a server and this could result 

in significant power consumption by the app as well as 

unacceptably long waits for the result.  

Many concerns of the game state detection method 

could be addressed by approaching the problem using 

newer methods such as CNNs. Object detection and 

localization have been proven to be effectively tackled by 

CNNs so further development in this direction would not be 

completely novel [10]. Furthermore, once trained, a CNN 

could run efficiently on mobile devices as every modern 

device now contains a GPU.  

 

Data and Code 

https://onedrive.live.com/redir?resid=5C6FE3F3DBCF3D

94!110477&authkey=!AC1MNLtk5SG22yA&ithint=file

%2czip 



 

5 

References 

[1] Allis, V. A Knowledge-based Approach of Connect-Four, 

Thesis, Vrije Universiteit, 1988.  

[2] Lowe, D. Object recognition from local scale-invariant 

features, ICCV 1999.  

[3] Bay, H. SURF: Speeded Up Robust Features, CVIU 2008. 

[4] Lindeberg, T. Detecting Salient Blob-like Image Structures 

and Their Scales with a Scale-Space Primal Sketch: A 

Method for Focus-of-Attention, IJCV 1993. 

[5] Girod, B. EE 368 Course Notes, Stanford University, 

http://web.stanford.edu/class/ee368/Handouts/Lectures/ 

[6] Fischler, M.A. Random sample consensus: A paradigm for 

model fitting with applications to image analysis and 

automated cartography, Comm. ACM 1981. 

[7] Hough, P.V.C. Method and means for recognizing complex 

patterns. U.S. Patent 3,069,654, 1962. 

[8] Saveski, M. AI Agent for Connect Four, 2009, 

https://github.com/msaveski/connect-four 

[9] Bradski, G. opencv_library, Dr. Dobb’s Journal of Software 

Tools, 2008. 

[10] Redmon, J. You Only Look Once: Unified, Real-time Object 

Detection, CVPR 2016. 

  

http://web.stanford.edu/class/ee368/Handouts/Lectures/
https://github.com/msaveski/connect-four


 

6 

 
(a) Input image 

 
(b) Game board silhouette 

 
(c) Game board corner detection 

 
(d) Homography transformed imaged 

 
(e) Red piece detection grid 

 
(f) Yellow piece detection grid 

 
(g) Detected game state 

 
(h) Output image. Column for next move is indicated in the top 

left and optimal next move is overlayed on the game board in red. 

Figure 3. Game state detection pipeline and final image output. 
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(i) (ii) (iii) 

(iv) (v) (vi) 

(vii) (viii) (ix) 

(x) (xi) (xii) 

Figure 4. Playthrough sequence of a Connect Four game with the iOS app. The app is making move suggestions for red player against the 

adversarial yellow player. The next optimal move is overlayed on the game board in red and the column for the move is displayed in the 

top left corner. The left-most column is column 1. After 12 moves for red player, we see that red has won. 
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(a)(i) 

 

(a)(ii) 

 
Yellow incorrectly detected 

b(i) 

 

b(ii) 

 
Red incorrectly detected 

c(i) 

 

c(ii) 

 
Correct state 

d(i) 

 

d(ii) 

 
Yellow incorrectly detected 

e(i) 

 

e(ii) 

 
Unusable silhouette 

f(i) 

 

f(ii) 

 
Unusable silhouette 

g(i) 

 

g(ii) 

 
Yellow incorrectly detected 

h(i) 

 

h(ii) 

 
Red incorrectly detected 

i(i) 

 

i(ii) 

 
Unusable silhouette 

j(i) 

 

j(ii) 

 
Unusable silhouette 

k(i) 

 

k(ii) 

 
Correct state 

l(i) 

 

l(ii) 

 
Incorrect corners 
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m(i) 

 

m(ii) 

 
Unusable silhouette 

n(i) 

 

n(ii) 

 
Yellow incorrectly detected 

o(i) 

 

o(ii) 

 
Correct state 

p(i) 

 

p(ii) 

 
Correct state 

q(i) 

 

q(ii) 

 
Yellow incorrectly detected 

r(i) 

 

r(ii) 

 
Both incorrectly detected 

Figure 5. Results of multiple images. a-k are the game board held in front of a monitor with different background colors. l-

r are the game board in various real world locations. The (i) images are the input image taken by the camera. The (ii) 

images are the first location where pathologies may be observed. From these results, we see that the key pathologies are in 

proper silhouette formation and detection of the pieces. An unusable silhouette means that game board edge detection fails. 

Detecting pieces incorrectly usually relates to incorrect color identification. 


