

1

Abstract

Connect Four is a strongly solved board game; the

global optimal move for every game state can be

determined. Connect Four is usually played with the

physical board game rather than on a computer. This

project bridges accessibility between the Connect Four

solver and the physical board game by using traditional

computer vision techniques to identify the game state for

input to the solver via a mobile application. The application

takes a picture of the game board and returns the next

optimal move by displaying an augmented image.

1. Introduction

Connect Four is a board game where two players

alternately place pieces in a vertical grid. The objective is

to create a game state where four pieces of the same color

are contiguous horizontally, vertically, or diagonally.

Connect Four is a strongly solved game and the global best

move can be calculated from any game state [1]. A player

going first can guarantee victory when playing perfectly. A

player going second can guarantee victory if the other

player makes at least one mistake.

These factors make Connect Four an attractive game to

approach because we can leverage modern computational

power to dynamically calculate the best move in near real-

time.

However, Connect Four is usually played as the physical

board game while these computational methods are all

virtual. By creating a mobile application (app), we can

bridge this disconnect and take advantage of the available

computing power in the cloud and on mobile to augment

reality. The basic idea is to use the app to take a picture of

the game board in order to calculate and communicate the

next optimal move to the user.

2. Related work

There are no existing computer vision publications on

Connect Four. However, there are computer vision

techniques that are closely related to this project for object

recognition. Thus, we focus on techniques used in this

project as well as related technologies that were considered.

2.1. Detectors and Descriptors

A popular keypoint and descriptor technique is scale-

invariant feature transform (SIFT) (Figure 1) [2]. To detect

keypoints, SIFT approximates a Laplacian of Gaussian

(LoG) edge detector with a difference of Gaussians for

more efficient computation. To achieve multiscale

performance, SIFT uses a Gaussian pyramid. Extrema and

corners are then detected in this pyramid across each image

level and across scales.

The SIFT descriptor uses a 16x16 neighborhood around

the keypoint. Histograms of gradient orientations of 4x4

sub-blocks are created and concatenated. The values of the

histograms are Gaussian weighted based on distance from

the keypoint and a threshold is also applied to the

histograms for robustness to illumination variations.

Inspired by the SIFT keypoint and descriptor, a faster

method was created: Speeded Up Robust Features (SURF)

[3]. Further approximating LoG, SURF uses box filters via

implementation in integral images to quickly calculate edge

images.

The SURF descriptor uses wavelet coefficients in a

neighborhood of 20x20 with 4x4 sub-blocks. The sums and

absolute sums of horizontal and vertical wavelet

coefficients compose the descriptor. Analysis of SURF

shows that it is significantly faster than SIFT but is less

robust than SIFT when handling viewpoint variation and

illumination variation.

There are alternative keypoint detectors and descriptors

that trade robustness for speed but we prioritize robustness

for this project and SIFT and SURF are sufficient.

Alternatively, instead of detecting keypoints, detecting

blobs may be equally useful if the region of interest is

largely uniform. Traditional blob detection has utilized

multiscale implementations of LoG via image pyramids [4].

There is a peak when the scale of the kernel matches the

scale of the blob. Similar to SIFT and SURF, LoG may be

approximated by a difference of Gaussians or box filters via

integral images for performance increases.

Once a blob has been detected, descriptors such as SIFT

and SURF may be used to identify the blob.

Connect Four App for Perfect Play

David Zeng

Stanford University
davidyzeng@stanford.edu

2

2.2. Image Correspondence

If we know a priori that two images have the same or

similar subjects, we can transform the viewpoint of one

image to correspond to the other. A common method to

calculate this correspondence is to extract keypoints from

both images and find matches between the two. We can

then use RANSAC [6] to filter out inconsistent matches

(Figure 2). With these matches, we can solve a projective

transform of one image to the other.

The corresponding point between images do not have to

be from keypoints though; corresponding points may be

derived via any method. For a projective transform, a

minimum of four matching points are required.

2.3. Line Detection

Detecting lines in images is useful because many real

objects are designed to be rectangular prisms and thus have

well-defined edges. A common method for detecting lines

is the Hough transform [7]. A Hough transform takes every

point and projects it in a parameter space such that it spans

all possible lines that it could belong to. When all points in

the image have been projected, maxima arise from the

intersection of many projections. These maxima correspond

to likely lines in the image.

3. Methods

There are two primary components for this project. The

first is processing the image to extract the current game

state for input to the Connect Four solver. The second is the

implementation of the iOS app to utilize this project on

mobile.

3.1. Game state extraction

The input to the system is the raw RGB image. The first

step is to generate a silhouette of the game board. To

accomplish this, we first convert the image from RGB to

HSV. This serves to build robustness to illumination

variation. We determine the hue of the blue game board and

then create a L1 distance threshold to detect the board. The

silhouette can broadly detect the game board. By using

image hole closing techniques, we can clean up the

silhouette to be usable (Figure 3(b)).

Next we extract the edges of the silhouette and use a

Hough transform to acquire the primary lines of the outline

of the board. We merge collinear line segments and place a

threshold on the length of the found lines to increase

robustness. With the lines found, we then determine the

points of intersection of the found lines. Sometimes we may

find more lines than the four edges of the game board. In

this case, we choose the four lines which intersect in the

smallest quadrangle.

The heuristic behind this choice is that the interior of the

game board should not produce any lines as it has no

straight edges since it is entirely circles. There is also a

minimum area to reduce noise. The results are shown in

Figure 3(c).

With the four corners of the game board identified, we

now have sufficient points to calculate a homography of the

input image to a rectified canonical image (Figure 3(d)).

With the rectified game board and known corners,

identifying the state of the board becomes straightforward.

We first identify the locations of pieces of each color. To

identify the red pieces, we first pixel-wise normalize the

RGB image. We then extract the red color channel from the

normalized image and threshold (Figure 3(e)). To identify

the yellow pieces, we convert the image to HSV and

threshold based upon the hue L1 distance (Figure 3(f)).

Both methods are philosophically the same but RGB has an

advantage to HSV in the case of red because red wraps

around the hue channel in HSV. This makes extracting red

more complicated whereas in RGB, an entire channel is

already dedicated to red. With both image masks, we close

holes by two dilations in the image to remove noise. We

then label the image to identify discrete pieces.

We now divide the game board into a grid. The grid and

identification of the pieces may not be perfect. Accounting

for this, we iterate through each labelled piece and choose

the cell with the most pixels of the silhouette as the cell to

which the piece belongs (Figure 3(g)). The process can be

interpreted as a generalized Hough transform. This results

in a fully determined game state.

Figure 1. Example of SIFT keypoints and descriptors [5].

Figure 2. Example of keypoint correspondences after

RANSAC [5].

3

With the game state determined, we now submit it to a

Connect Four solver [8] whose API we have slightly altered

to fit our system. Briefly, the solver explores all possible

future game states via a minimax tree. By taking advantage

of alpha-beta pruning, the tree can be efficiently searched.

The solver returns the location of the optimal next move

and we draw the next piece in the appropriate position as

well as display the column number of the optimal move in

the top left corner (Figure 3(h)). Column 1 is the left-most

column.

3.2. Mobile app implementation

The app takes a picture using the camera and sends it via

FTP to a server. The server is triggered on receipt of the file

to run the MATLAB implementation of the game state

extraction and create the final image with the next move.

This image is then pushed back to the mobile device and

displayed.

4. Results and Discussion

The processing pipeline results are shown in Figure 3.

An actual playthrough of the game is shown in Figure 4.

The app worked surprisingly well. On moves (iii), (ix), and

(x), the images had to be retaken because game board

detection did not recognize all four edges of the game board

correctly. Although it does not work on the first try every

time, it is encouraging that by taking new pictures, the

method can work on subsequent attempts.

The initial thought is that silhouette detection does not

have to be robust because we are looking for edges. We

only have to detect fragments of each edge to extract line

segments. The line segments do not have to intersect on the

image because we can extrapolate the true line to calculate

points of intersection.

When we are choosing which lines to use, the

assumption that the smallest quadrangle is the true game

board usually holds. It has held that the game board does

not generate edges within it but at large oblique angles, the

legs of the game board begin to be detected as edges and

this can result in a pathology in the method.

At the same time, silhouette detection cannot

catastrophically fail. Figure 5 (e), (f), (i), (j), and (m) are

examples when silhouette detection failed. Diagnosing

these cases, we see that the most common mode of failure

is when the background color is too similar to blue and

detected as an extension of the game board. There are many

natural colors with hues similar to blue including the sky

and this may lead to incorrect results.

Even knowing this pathology, the solutions are not

immediately apparent. If the blue color of the game board

is an unreliable descriptor, then the only other unique aspect

is its shape. Detecting a particular shape is more difficult,

especially if detection must be projectively invariant. One

potential idea is to use blob detectors and if enough blobs

are arranged in projective grid then we can assume that the

game board must contain these blobs. However, even at

face value this method is already more easily proposed than

implemented.

If we can detect the four corners correctly, the

homography is robust and the remaining methods can

perform independently of previous processing. This is

based on a strong assumption that the four corners detected

correspond to the true four corners. The strength of this

assumption leads to more robust techniques down the

pipeline but also requires that previous techniques are

robust. This requirement is not necessarily met so there are

many times in which the proposed method for this project

fails. In Figure 5(l), we see what can happen when this

assumption fails. The game board is incorrectly detected

and the homography results in an incorrect grid for piece

detection.

Even when the corners are properly detected, piece

detection can be challenging. Figure 5 (b) and (h) are

examples of when red is incorrectly detected. In both of

these cases, the background is similar to red. These

pathologies are not discouraging because the method is

working exactly as intended. The pieces are identified

almost exclusively on color and in this case, the technique

is achieving few false negatives. Furthermore, even to a

human from a distance, it would be unreasonable for them

to quickly determine which cells had red pieces and which

cells were empty with a red background. This suggests that

future work needs to somehow differentiate between red

pieces and red backgrounds of exactly the same color.

Perhaps the texture of the pieces or the matte reflectance

could be identified.

On the other hand, yellow piece detection does not

perform as well. Figure 5 (a), (d), (g), (n), (q), and (r) show

examples of incorrect yellow piece detection. Figure 5(d)

can be explained by the argument above for red piece

detection. Figure 5 (a), (n), and (r) show false positives for

yellow piece detection. In these cases, the background

colors are being detected as yellow and this not an

uncommon situation since lighting usually has a yellow tint.

One way to combat this is to check for board consistency.

Physically, pieces cannot float in the game board without

pieces below it so this could be one check. Another check

could be to count the instances of each piece such that the

number of red and yellow pieces are within one since

players alternate turns. When checking for number of

pieces, if an incorrect of pieces is detected, it would still be

ambiguous to determine which pieces are false positives.

Yellow piece false negatives are shown in Figure 5 (g)

and (q). In these cases, it seems like the background has

changed the white balance of the images and the hue of the

pieces has been shifted outside the threshold. Detecting

yellow is again difficult because yellow is particularly

sensitive to white balance changes and this affects the

fundamental color assumption in our method.

White balance is also interesting because even in the

4

same real world lighting conditions, adjusting white

balance effectively adjusts illumination. Cursorily looking

over the images in Figure 5, we can see that the game board

has varying degrees of apparent illumination even though

only the background is changing. Thus, illumination

robustness is especially important due to processing by the

image acquisition stack.

Even with so many failure cases, there are several

instances in which the method performs correctly. In

addition to the complete game played in Figure 4, Figure 5

(c), (k), (o), and (p) correctly detect the state in very

different situations.

Figure 5 (c) and (k) correctly detect the state when the

background is a benign color relative to the colors being

detected. Figure 5 (o) and (p) demonstrate the rotation

invariance of the homography and Figure 5(o) is

particularly impressive in that its background is cluttered.

4.1. Alternative methods

The original plan for game board identification was to

use SIFT keypoints and descriptors in order to calculate a

homography with RANSAC with a canonical rectified

game board. This method did not work well because the

game board is all circles. The circles do not generate any

SIFT keypoints. This led to trying blob detectors with SIFT

descriptors. The circles of the game board are detected but

the keypoint matching does not work well because we are

then using the background to match keypoints. However,

the background of the canonical reference image is not

going to match with an arbitrary background. Even just

using only the blob locations without descriptors is not

robust because not all of the game cells are necessarily

detected as blobs. This would require further work to

determine the true extent of the game board. If the

keypoints are not matched correctly then RANSAC will not

work. The keypoints could be heuristically matched but

even then the method is not guaranteed to be robust.

This reveals the actual intent of rectifying the image. We

are not truly after image identification since we a priori

assume that the game board must be in the picture but we

are actually interested in localization of the game board.

Keypoints are the traditional approach but in this case

cannot define the game board well enough. Interestingly,

edge detection via silhouette and Hough transform are not

the first thoughts that arise when approaching this problem

but this method provides important exact localization

information.

There are many heuristic-based methods in this

implementation. Many of these work well in controlled

environments but they may fail quickly in arbitrary

environments. Improvements to these methods could come

from more advanced methods such as convolutional neural

networks (CNNs). Every step of this project could actually

be implemented in a CNN. In fact, it would not be

unthinkable that a CNN could perform the entire game state

detection pipeline.

5. Future Work

The original idea for this project was to create an

augmented reality app for solving Connect Four. The

augmented reality portion proved to be too ambitious for

this project. There are object tracking libraries available for

object tracking on mobile but many of them are not free or

do not work well. As noted above, the game board does not

generate keypoints and almost all traditional object tracking

methods rely on keypoints. These algorithms could be

modified to use blob detection but then again descriptors

are a challenge because the game board occludes the

background.

Another idea would to track the game board would be to

identify an area devoid of keypoints but this would then

significantly alter the object tracking algorithmically.

Fundamentally, while the idea of augmented reality in

the app may sound novel and exciting, there is actually little

utility added. The minimum requirements for this app to

function is to display a number to the user to indicate in

which column the next piece should be placed. The picture

is to create a more intuitive user experience. Augmented

reality would further enhance user experience but is an

expensive computation.

Currently all of the processing is performed in the cloud.

There are two factors for this decision. The first is that all

of the algorithms have already been implemented in

MATLAB and the Connect Four solver is written in Python.

Admittedly, the MATLAB portions could be converted to

native code using analogous functions in libraries such as

OpenCV [9]. It is a significant resource commitment to run

a Python script natively on iOS and the alpha-beta pruning

algorithm would probably have to be rewritten.

Furthermore, the Connect Four solver requires

significant computation. On a server, the solver can at times

use up to 30 seconds of computation to solve its alpha-beta

pruning algorithm. Mobile devices are generally less

computationally powerful than a server and this could result

in significant power consumption by the app as well as

unacceptably long waits for the result.

Many concerns of the game state detection method

could be addressed by approaching the problem using

newer methods such as CNNs. Object detection and

localization have been proven to be effectively tackled by

CNNs so further development in this direction would not be

completely novel [10]. Furthermore, once trained, a CNN

could run efficiently on mobile devices as every modern

device now contains a GPU.

Data and Code

https://onedrive.live.com/redir?resid=5C6FE3F3DBCF3D

94!110477&authkey=!AC1MNLtk5SG22yA&ithint=file

%2czip

5

References

[1] Allis, V. A Knowledge-based Approach of Connect-Four,

Thesis, Vrije Universiteit, 1988.

[2] Lowe, D. Object recognition from local scale-invariant

features, ICCV 1999.

[3] Bay, H. SURF: Speeded Up Robust Features, CVIU 2008.

[4] Lindeberg, T. Detecting Salient Blob-like Image Structures

and Their Scales with a Scale-Space Primal Sketch: A

Method for Focus-of-Attention, IJCV 1993.

[5] Girod, B. EE 368 Course Notes, Stanford University,

http://web.stanford.edu/class/ee368/Handouts/Lectures/

[6] Fischler, M.A. Random sample consensus: A paradigm for

model fitting with applications to image analysis and

automated cartography, Comm. ACM 1981.

[7] Hough, P.V.C. Method and means for recognizing complex

patterns. U.S. Patent 3,069,654, 1962.

[8] Saveski, M. AI Agent for Connect Four, 2009,

https://github.com/msaveski/connect-four

[9] Bradski, G. opencv_library, Dr. Dobb’s Journal of Software

Tools, 2008.

[10] Redmon, J. You Only Look Once: Unified, Real-time Object

Detection, CVPR 2016.

http://web.stanford.edu/class/ee368/Handouts/Lectures/
https://github.com/msaveski/connect-four

6

(a) Input image

(b) Game board silhouette

(c) Game board corner detection

(d) Homography transformed imaged

(e) Red piece detection grid

(f) Yellow piece detection grid

(g) Detected game state

(h) Output image. Column for next move is indicated in the top

left and optimal next move is overlayed on the game board in red.

Figure 3. Game state detection pipeline and final image output.

7

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

(x) (xi) (xii)

Figure 4. Playthrough sequence of a Connect Four game with the iOS app. The app is making move suggestions for red player against the

adversarial yellow player. The next optimal move is overlayed on the game board in red and the column for the move is displayed in the

top left corner. The left-most column is column 1. After 12 moves for red player, we see that red has won.

8

(a)(i)

(a)(ii)

Yellow incorrectly detected

b(i)

b(ii)

Red incorrectly detected

c(i)

c(ii)

Correct state

d(i)

d(ii)

Yellow incorrectly detected

e(i)

e(ii)

Unusable silhouette

f(i)

f(ii)

Unusable silhouette

g(i)

g(ii)

Yellow incorrectly detected

h(i)

h(ii)

Red incorrectly detected

i(i)

i(ii)

Unusable silhouette

j(i)

j(ii)

Unusable silhouette

k(i)

k(ii)

Correct state

l(i)

l(ii)

Incorrect corners

9

m(i)

m(ii)

Unusable silhouette

n(i)

n(ii)

Yellow incorrectly detected

o(i)

o(ii)

Correct state

p(i)

p(ii)

Correct state

q(i)

q(ii)

Yellow incorrectly detected

r(i)

r(ii)

Both incorrectly detected

Figure 5. Results of multiple images. a-k are the game board held in front of a monitor with different background colors. l-

r are the game board in various real world locations. The (i) images are the input image taken by the camera. The (ii)

images are the first location where pathologies may be observed. From these results, we see that the key pathologies are in

proper silhouette formation and detection of the pieces. An unusable silhouette means that game board edge detection fails.

Detecting pieces incorrectly usually relates to incorrect color identification.

